Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic
نویسندگان
چکیده
Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean.
منابع مشابه
Quantifying Integrated Proteomic Responses to Iron Stress in the Globally Important Marine Diazotroph Trichodesmium
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual 'new' nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron require...
متن کاملRegional distributions of nitrogen-fixing bacteria in the Pacific Ocean
We evaluated the regional distributions of six nitrogen (N2)-fixing bacteria in the North Pacific Ocean using quantitative polymerase chain reaction amplification of planktonic nifH genes. Samples were collected on four oceanographic research cruises between March 2002 and May 2005 that spanned a latitudinal range from 12uS and 54uN between 152uW and 170uW. Samples were collected throughout the...
متن کاملEffects of iron limitation on the expression of metabolic genes in the marine cyanobacterium Trichodesmium erythraeum IMS101.
Iron deficiency in axenic cultures of Trichodesmium erythraeum IMS101 led to significant declines in both nitrogen fixation rates and photochemical energy conversion efficiency, accompanied by downregulation of genes encoding the major iron-binding proteins, including psbA and psbE of photosystem II, psaA and psaC of photosystem I, petB and petC of the cytochrome b(6)f complex, and nifH. Howeve...
متن کاملLatitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean
We have determined the latitudinal distribution of Trichodesmium spp. abundance and community N2 fixation in the Atlantic Ocean along a meridional transect from ca. 30 N to 30 S in November–December 2007 and April–May 2008. The observations from both cruises were highly consistent in terms of absolute magnitude and latitudinal distribution, showing a strong association between Trichodesmium abu...
متن کاملN2 fixation by unicellular bacterioplankton from the Atlantic and Pacific oceans: phylogeny and in situ rates.
N2-fixing proteobacteria (alpha and gamma) and unicellular cyanobacteria are common in both the tropical North Atlantic and Pacific oceans. In near-surface waters proteobacterial nifH transcripts were present during both night and day while unicellular cyanobacterial nifH transcripts were present during the nighttime only, suggesting separation of N2 fixation and photosynthesis by unicellular c...
متن کامل